

Aquatic Science and Fish Resources

http://asfr.journals.ekb.eg

Print ISSN: 2682-4086 Online ISSN: 2682-4108

Pre-Exposure of Common Carp (*Cyprinus carpio*) to Ambient Copper and Microplastic Changes the Gill Ionoregulaion- Related Transcripts During Saltwater Exposure

Seyyed Morteza Hoseini^{1,*}, Basim S.A. Al Sulivany²

¹ Inland Waters Aquatics Resources Research Center, Iranian Fisheries Sciences Research Institute, Agricultural Research, Education and Extension Organization, Gorgan, Iran.

² Department of Biology, College of Science, University of Zakho, 42002, Zakho, Duhok, Republic of Iraq.

³Anesthesia Department, college of health sciences, Cihan University-Duhok, Iraq.

*Correspondence: Seyyed Morteza Hoseini, seyyedmorteza.hoseini@gmail.com

ARTICLE INFO

Received: June. 16, 2025 Revised: Sept. 22, 2025 Accepted: Oct.10, 2025 Available online: Oct.16, 2025

Doi:10.21608/asfr.2025.394780.1084

Keywords

Gene Expression

Water Contamination

Carp Rearing

Co-Exposure

Common Carp

Abstract

In this study, common carp (*Cyprinus carpio*) were exposed to 0.25 mg/L copper alone (Cu treatment) or in combination with 0.5 mg/L polyvinyl chloride microparticles (Cu-MP treatment) for 14 days, followed by a 72-h challenge in brackish water (13 ppt NaCl). After 14 days of exposure, gill copper concentrations were significantly elevated in both the Cu and Cu-MP treatments relative to the control group (P = 0.008), with no significant difference between the two treatments. Gene expression analysis of gill tissue following the exposure period revealed substantial upregulation of the glucocorticoid receptor (gr) and Na⁺/K⁺-ATPase α 1a subunit ($nak\alpha$ 1a) genes in the Cu treatment. In contrast, the Cu-MP treatment showed only modest upregulation of gr and significant downregulation of $nak\alpha$ 1a. After the subsequent brackish-water challenge, $nak\alpha$ 1a expression was significantly downregulated in control fish, whereas gr expression remained unchanged. Overall, these gill gene expression patterns suggest that copper exposure disrupts ionoregulatory homeostasis in common carp, but co-exposure to polyvinyl chloride microparticles does not exacerbate these effects.

1. Introduction

Water pollution poses a significant threat to the aquaculture industry, adversely impacting fish health and the quality of fillets (Sonone *et al.*, 2020; Das *et al.*, 2025). Among the primary

pollutants affecting surface and seawater are microplastics (MPs) and copper, which have detrimental effects on fish well-being (Malhotra et al., 2020; Kim et al., 2021). Research has shown that these pollutants can induce oxidative stress, cause histopathological damage, and lead to overall stress in fish (Gopi et al., 2019; Naz et al., 2021). Furthermore, microplastics (MPs) strongly tend to adsorb other waterborne pollutants, acting as carriers for metals and facilitating their transfer into fish through the oral route (Banaee et al., 2019; Owais et al., 2025). Consequently, the presence of MPs in aquatic environments may exacerbate metal accumulation in fish tissues, heightening the toxic effects of these metals. Recent studies have increasingly focused on the combined impacts of microplastics and metals on fish health (Lu et al., 2018; Wen et al., 2018; Jinhui et al., 2019; Roda et al., 2020; Asad et al., 2024). Common carp, Cyprinus carpio, is a widely favored species in the global aquaculture industry, mainly due to its cultural significance and resilient nature. This hardiness makes it an excellent candidate for cultivation in waters with varying physicochemical properties. Although primarily a freshwater species, common carp can thrive in natural brackish water environments (Barus et al., 2001). Consequently, fish culturists often consider rearing fish in brackish water ponds. When common carp are transferred from freshwater to brackish water, they experience stress and activate various physiological pathways that help them achieve homeostasis in hyperosmotic conditions (Ghelichpour et al., 2018). The fish gill has pivotal roles under such conditions, as it is the main organ of osmoregulation and ionoregulation in the fish. The gill Na/K-ATPase is an important enzyme in osmoregulation (Ghelichpour et al., 2020). The enzymes have several subunits with different roles; among them, subunits $\alpha 1a$ and α 1b have higher activities in freshwater and saltwater (McCormick et al., 2009). The enzyme activity is controlled by cortisol through glucocorticoid receptors (gr) (McCormick et al., 2008). Along with this role in controlling Na/ Na/K-ATPase activity, cortisol has a significant role in fish metabolism under stressful conditions such as osmotic challenges (Aluru & Vijayan, 2009); as a consequence, it is involved in energy supply during the stress (Brun et al., 2019). Therefore, it is interesting to determine the relationships between copper/MPs and the exposure of these proteins to saltwater in fish. This study investigates the effects of water pollution caused by copper, both alone and in combination with MPs, on common carp during exposure to saltwater conditions. Understanding these effects is crucial, as pollution from MPs is widespread, and copper is frequently employed in carp pond management as a therapeutic agent despite its status as a standard water pollutant. Therefore, there is a pressing need to evaluate the toxic impacts of copper and MPs on common carp when subjected to saltwater challenges, particularly in light of the growing

interest in rearing this species in brackish waters. It was hypothesized that pre-exposure to water copper impairs osmoregulation in common carp, and co-exposure to copper and MPs worsens such an impairment.

2. Materials and Methods

1. Experimental protocol

Common carp (average weight: 37.5 ± 3.24 g) were placed in nine 40-liter aquaria with a stocking density of seven fish per tank. The fish underwent a ten-day acclimatization period during which they were fed a commercial sinking diet from Beyza Feed Mill (Shiraz, Iran) at a rate of 2% of their biomass daily. Continuous aeration was provided, and to maintain optimal water quality, half of the water in each aquarium was replaced with clean water daily (Hoseini et al., 2022). Following the acclimation period, the aquaria were divided into three treatment groups, each with three replicates. One treatment was exposed to 0.25 mg/L copper (Cu), one treatment was exposed to 0.25 mg/L copper and 0.5 mg/L polyvinyl chloride MPs (Cu-MP), and one treatment served as a control (not exposed to contaminants). Characteristics of copper and MPs used in this study have been reported before (Hoseini & Al Sulivany, 2024; Asad et al., 2025). Polyvinyl chloride MPs (CAS 9002-86-2) was obtained from Arvand Petrochemical Co., located in Bandar-e-Mahshahr, Khuzestan province, Iran. The morphology of the polyvinyl chloride MPs particles was characterized using a scanning electron microscope (SEM-MIRA3-XMU, TESCAN, Brno, Czech Republic). The particles showed a relatively spherical shape with smooth surfaces and an average diameter of 140 µm. A stock solution of 10 g/L was prepared in test water for use in the experiments.

Copper sulfate pentahydrate, obtained from Merck KGaA (Darmstadt, Germany), served as the source of copper. A stock solution of 5 g/L was prepared from this compound for the experiments.

The exposure lasted 14 days, during which 30% of the aquarium water was replaced with clean water. The desired amounts of copper and MPs were added to the water to maintain the initial concentrations. After 14 days of exposure to the contaminants, all fish were exposed to salt water (13 g/L sodium chloride) for 72 h. Gill samples were collected after 14 days of exposure to the contaminants, as well as 24 and 72 hours after the fish were subjected to saltwater conditions. For sampling, two fish from each aquarium were euthanized by a sharp blow to the head; their gills were then excised and rinsed with

distilled water. Six gill samples were dried at 70° C for 24 hours and subsequently analyzed for copper content (n = 6), while three additional gill samples were immediately frozen in liquid nitrogen for gene expression analysis.

Throughout the study, water quality parameters were monitored using digital devices (Hach HQ40D portable probe, Colorado, USA; Palintest 7100 photometer, NE11 0NS, United Kingdom). The recorded measurements included temperature at $23.5 \pm 1^{\circ}$ C, pH at 7.79 ± 0.65 , dissolved oxygen at 6.39 ± 0.45 mg/L, hardness at 195 ± 8.99 mg CaCO₃/L, and unionized ammonia levels at 0.01 ± 0.005 mg N/L (Abdulrahman & Al Sulivany, 2025; Yousefi *et al.*, 2025; Hoseini *et al.*, 2025).

Copper concentrations in the aquaria water were measured four times during the experiment. The concentration in control, Cu, and Cu-MP treatments was 0.0035 ± 0.001 , 0.242 ± 0.022 , and 0.250 ± 0.020 mg/L, respectively.

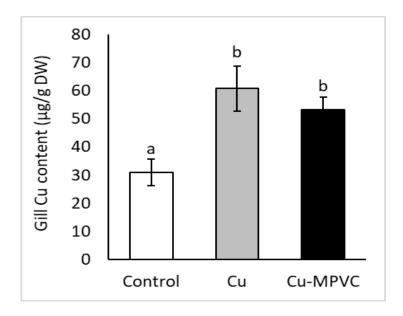
2. Water and gill copper analysis

Copper concentrations in water and gill samples were determined using a graphite atomic absorption spectrophotometer (Agilent 240z, Santa Clara, California, USA). Water samples were digested with concentrated nitric acid at a 1:1 (v/v) ratio for the analysis. In contrast, gill samples were digested at a 1:20 (w/v) ratio before being injected into the atomic absorption spectrophotometer (Agilent 240z, Santa Clara, California, USA).

3. Gill transcript analysis

Specific primers for common carp were designed based on species data from GenBank, utilizing Geneious IR9 and Oligo-analyzer software (Table 1). RNA was extracted from gill samples using a commercial kit (Dena Zist Asia Co., Mashhad, Iran) and treated with DNase I (Thermo Fisher Scientific, Waltham, MA, USA) to eliminate DNA contamination. Complementary DNA (cDNA) synthesis was performed using a commercial kit from SMOBIO Technology (Hsinchu City 30075, Taiwan). Gene expression levels were quantified via real-time PCR (Applied Biosystems, Step One, Foster City, California, USA). The reaction mixtures consisted of 1 μ L cDNA, 0.5 μ L primer, and 5 μ L SYBR Green (Ampliqon A/S, Stenhuggervej 22, 5230 Odense M, Denmark), with the total volume adjusted to 10 μ L by adding diethyl pyrocarbonate (Bio Basic Inc., Markham, ON, Canada). Each sample was analyzed in duplicate, and normalization was performed using the housekeeping gene *beta-actin*. The $\Delta\Delta$ Ct method was used to calculate expression levels, which were log2-transformed and expressed as fold changes relative to control fish in freshwater.

Table 1: Forward and reverse sequences, length, amplicon size, and accession number of the selected genes' primers


Primer	Sequence (5-3)	length	Tm	Amplicon	Efficiency	Accession
				(bp)	(%)	no.
nakα1a-F	CCACTCTTGCTTCTGGTCTTG	20	60	131	98.5	JX570881.1
nak $lpha 1$ a -R	ACCAAGGATCAGGGAGAGAAC	21	60	131		
gr-F	GGTGTCAATGTGTCCGCTTTA	21	60	126	96.7	A 1970140
gr -R	AGCTGGTTCTTGTGTGTTACG	21	60	120		AJ879149
beta-actin-F	TCTGCTATGTGGCTCTTGACT	21	60		93.5	
beta-actin-	AACCTCTCATTGCCAATGGTG	20	60	118		XM_019106214.1
R	AACCICICATIGCCAAIGGIG	20	60			

4. Statistical analysis

The gill copper content data did not satisfy the assumptions required for ANOVA (as confirmed by Shapiro-Wilk and Levene tests); therefore, the data were log_{10} -transformed prior to conducting one-way ANOVA. Gene expression data underwent log_2 transformation and were analyzed using two-way ANOVA (considering factors of toxicant exposure and saltwater challenge). Significant differences among treatment groups were determined using Tukey's test. A significance level of P < 0.05 was adopted, and results are presented as mean \pm standard error (SE). All statistical analyses were conducted using SPSS version 22.

3. Results

There was no mortality in the treatments during the experiment. The copper content in the water for the control, Cu, and Cu-MP treatments was 0.0035 ± 0.001 , 0.242 ± 0.022 , and 0.250 ± 0.020 mg/L, respectively. Cu and Cu-MP treatments exhibited similar gill copper contents and significantly (P = 0.008) higher gill copper contents than the control treatment after 14-d exposure (Fig. 1).

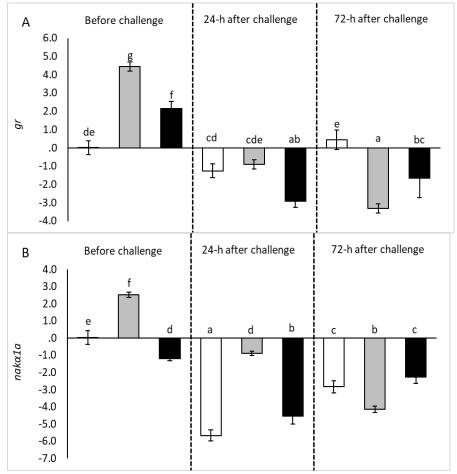


Figure 1. Gill copper content following 14 days exposure to 0.25 mg/L copper alone or in combination with 0.5 mg/L polyvinyl chloride MPs. Different letters above the bars indicate significant differences among the treatments (Tukey; n = 6).

Exposure to copper and polyvinyl chloride microparticles and saltwater challenge induced a significant interaction effect on gill gr gene expression (P < 0.001). After 14-day exposure to Cu or Cu-MP, the gill gr gene expression significantly increased in the Cu treatment group. The control fish exhibited no significant changes in the gill gr gene expression during 24 and 72 h saltwater exposure. The gill gr gene expression decreased in Cu and Cu-MP treatments after 24 h saltwater exposure and remained unchanged until 72 h (Fig. 2A).

Exposure to copper and polyvinyl chloride microparticles, along with a saltwater challenge, induced a significant interaction effect on gill $nak\alpha 1a$ gene expression (P < 0.001). There was no significant difference in the gill $nak\alpha 1a$ gene expression between the control and Cu-MP fish after 14-day exposure; however, the gene expression of Cu fish was significantly higher than the other treatments at this time. The gill $nak\alpha 1a$ gene expression significantly decreased in all treatments after the 24-hour saltwater challenge; at this time, the control and Cu-MP treatments showed similar gene expressions and were significantly lower than that of the Cu treatment. 72 h after saltwater exposure, the gill $nak\alpha 1a$ expression significantly increased in the control and Cu-MP treatments, compared to 24 h. However, the Cu fish exhibited a further down-regulation in the gill $nak\alpha 1a$ expression after a 72-h saltwater challenge. At this time, all treatments exhibited

lower $nak\alpha 1a$ gene expression compared to the control fish before the saltwater challenge (Fig. 2B).

Figure 2. Expression of gr (A) and $nak\alpha 1a$ (B) in the fish gill after 14 days exposure to 0.25 mg/L copper alone or in combination with 0.5 mg/L polyvinyl chloride MPs, followed by 24 and 72 h saltwater exposure. White bars: control fish; gray bars: Cu fish, and black bars: Cu-MP fish. Different letters indicate significant differences among the treatments (Tukey; n = 3).

4. Discussion

MPs serve as vectors for metals in aquatic environments, facilitating their accumulation in fish. The current findings align with the research by Roda et al. (2020), which indicated that polyethylene MPs do not enhance copper accumulation in the gills of *Prochilodus lineatus*. In contrast, Lu et al. (2018) reported that polystyrene MPs promote cadmium accumulation in the liver, gut, and gills of zebrafish Danio rerio after a three-week exposure period. Furthermore, Wen et al. (2018) demonstrated that polystyrene MPs can reduce whole-body cadmium accumulation in discus fish, *Symphysodon aequifasciatus*, potentially due to lower levels of metallothionein in fish co-exposed to both MPs and cadmium. Given these

findings, it is essential to investigate whether the lack of change in gill copper accumulation between copper-only and copper-MP exposures is related to metallothionein levels in the tissue.

Cortisol is necessary under stressful conditions or exposure to toxicants because it protects organs against necrosis by inducing apoptosis and regulating ion transportation (Kiilerich et al., 2007a; Hoseini et al., 2022). gr is a mediator of cortisol effects on cells and is up-regulated under stress (Kiilerich et al., 2007a; Brun et al., 2019). It has been documented that copper exposure increases gr expression in fish (Chao Dang et al., **2000)**, but there is no such data about the MPs. However, gr-mutant zebrafish exhibit higher whole-body cortisol levels in response to plastic nanoparticles than wild fish exposed to the same nanoparticles. The mutant fish had lower glucose levels than the wild fish, suggesting the importance of gr in cortisol-mediated energy supply during plastic exposure (Brun et al., 2019). Therefore, up-regulation of gr in the fish gill in response to copper or polyvinyl chloride microparticles is a defensive mechanism to protect the organ against the harmful effects of the toxicants. It has been demonstrated that the stability of the hormone-receptor complex, along with the receptors' richness and affinity, plays a pivotal role in mediating the effects of the hormone on target cells (Shrimpton & McCormick, 1999). This may explain why the control fish did not change in gr expression during the saltwater challenge. The present results are in contrast to previous studies showing saltwater exposure increases gr expression in the fish gill (Marsigliante et al., 2000; Bury et al., 2003; Kiilerich et al., 2007b); however, they are in line with Flores and Mark Shrimpton (2012), who found no change in the gill gr expression in rainbow trout transferred to saltwater or ion-poor freshwater. According to the present results, Cu and Cu-MP exposure led to changes in the gill gr transcript in response to saltwater exposure. Such a down-regulation in the gill gr expression can disturb ion regulation, as the central role of cortisol in fish saltwater tolerance is the regulation of Na/ Na/K-ATPase pump, and such effects are mediated by gr (McCormick et al., 2008).

 $nak\alpha 1a$ is a crucial protein that regulates ion concentration in the fish body. The enzymes have several sub-units and isomers with different functions. The isomer $\alpha 1a$ was found to have higher activity than $\alpha 1b$ when fish are in freshwater, and vice versa. The isomer $\alpha 1a$ seems responsible for ion influx in the hypo-osmotic environment (Bystriansky *et al.*, 2006; McCormick *et al.*, 2009). Copper toxicity has been known to cause sodium loss

in fish, a mechanism mediated by a copper-induced decrease in $nak\alpha 1a$ activity in the basolateral membrane of the gills (Grosell *et al.*, 2007). According to the present results, the up-regulation in $nak\alpha 1a$ expression in Cu treatment may be a response to lower enzyme activity and internal sodium loss. On the other hand, Cu-MP fish showed a down-regulation in the $nak\alpha 1a$ gene expression, which might be due to the combined toxic effects of copper and microplastic on the transcription processes. Measurement of internal ions' concentrations may better reflect the mechanisms behind such changes. The control fish exhibited a significant down-regulation in the gill $nak\alpha 1a$ expression after the saltwater challenge, indicating the role of $nak\alpha 1a$ in a hypo-osmotic medium (Bystriansky *et al.*, 2006; McCormick *et al.*, 2009). Therefore, the gene's down-regulation in Cu and Cu-MP treatments after the saltwater challenge is explained by increased electrolyte levels in the fish body, which lead to the activation of the $\alpha 1b$ subunit. This is an exciting topic that should be pursued in the future.

5. Conclusion

Exposure to copper disrupted gill ion regulation in common carp, increasing gr and nak α 1a gene expression. However, when combined with polyvinyl chloride microplastics (Cu-MP), the effect on nak α 1a was reduced, suggesting a mitigating influence. Saltwater conditions further influenced gene activity, revealing the carp's adaptive mechanisms to osmotic changes. Notably, microplastics did not intensify copper's impact on ion balance. These results reveal intricate pollutant-salinity interactions, stressing the importance of deeper investigation into contaminant coexposure in aquaculture to safeguard fish health and industry sustainability.

Ethical statement

All experimental procedures involving animals were approved by the Ethics Committee of the Inland Waters Aquatic Resources Research Center, Gorgan, Iran (Reference Approval Number: ...) and were performed in accordance with relevant guidelines and regulations

Author Contributions

Both authors have reviewed the final version to be published and agreed to be accountable for all aspects of the work.

Concept and design: Seyyed Morteza Hoseini, Basim S.A. Al Sulivany

Acquisition, analysis, or interpretation of data: Seyyed Morteza Hoseini, Basim S.A. Al Sulivany

Drafting of the manuscript: Seyyed Morteza Hoseini, Basim S.A. Al Sulivany

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

REFERENCES

- Abdulrahman, P., & Sulivany, B. A. (2025). Dietary Quercus infectoria Mitigates Lead Nitrate Toxicity in Common Carp (Cyprinus carpio): Impacts on Growth Performance, Condition Factors, Weight Length Relationship, Hematological Responses, and Detoxification Potential During 60-Day Exposure. *Egyptian Journal of Aquatic Biology and Fisheries*, 29(2), 383–405. https://doi.org/10.21608/ejabf.2025.416695
- Aluru, N., & Vijayan, M. M. (2009). Stress transcriptomics in fish: A role for genomic cortisol signaling. *General and Comparative Endocrinology*, 164(2–3), 142–150. https://doi.org/10.1016/j.ygcen.2009.03.020
- Asad, F., Sulivany, B. A., Ali, S., Owis, M., Fazal, R. M., & Hussein, N. (2024). Origin, Physical Properties, biodegradation, and Potential Effects of Microplastics on Aquaculture. *Aquatic Science and Fish Resources (ASFR) / Aquatic Science and Fish Resources (ASFR)*, 5(1), 85–99. https://doi.org/10.21608/asfr.2024.320846.1067
- Asad, F., Nadeem, A., Naseer, S., Ashraf, A., Al Sulivany, B. S., & Jamal, R. (2025). Toxic and synergistic effects of micronanoplastics with radioactive contaminants on aquaculture: Their occurrence, distribution, role as vectors, detection and removal strategies. *International Aquatic Research*, 17(2), 95-116. https://doi.org/10.22034/iar.2025.2008924.1739
- Banaee, M., Soltanian, S., Sureda, A., Gholamhosseini, A., Haghi, B. N., Akhlaghi, M., & Derikvandy, A. (2019). Evaluation of single and combined effects of cadmium and micro-plastic particles on biochemical and immunological parameters of common carp (Cyprinus carpio). *Chemosphere*, 236, 124335. https://doi.org/10.1016/j.chemosphere.2019.07.066
- Barus, V., Peaz, M., & Kohlmann, K. (2001). Cyprinus carpio (Linnaeus, 1758). in: Banarescu, P., Paepke, H. (Eds.), The freshwater fishes of Europe. Aula Verlag GmbH, Wiebelsheim, Germany, pp. 85-179.
- Brun, N. R., van Hage, P., Hunting, E. R., Haramis, A. P. G., Vink, S. C., Vijver, M. G., Schaaf, M. J. M., & Tudorache, C. (2019). Polystyrene nanoplastics disrupt glucose metabolism and cortisol levels with a possible link to behavioral changes in larval zebrafish. *Communications biology*. 2 (382). 1-9. https://doi.org/10.1038/s42003-019-0629-6
- Bury, N., Sturm, A., Rouzic, P. L., Lethimonier, C., Ducouret, B., Guiguen, Y., Robinson-Rechavi, M., Laudet, V., Rafestin-Oblin, M., & Prunet, P. (2003). Evidence for two distinct functional glucocorticoid receptors in teleost fish. *Journal of Molecular Endocrinology*, 31(1), 141–156. https://doi.org/10.1677/jme.0.0310141
- Bystriansky, J. S., Richards, J. G., Schulte, P. M., & Ballantyne, J. S. (2006). Reciprocal expression of gill Na+/K+-ATPaseα-subunit isoforms α1a and α1b during seawater acclimation of three salmonid fishes that vary in their salinity tolerance. *Journal of Experimental Biology*, 209(10), 1848–1858. https://doi.org/10.1242/jeb.02188
- Dang, Z. C., Flik, G., Ducouret, B., Hogstrand, C., Bonga, S. E. W., & Lock, R. A. (2000). Effects of copper on cortisol receptor and metallothionein expression in gills of Oncorhynchus mykiss. *Aquatic Toxicology*, 51(1), 45–54. https://doi.org/10.1016/s0166-445x(00)00102-8
- Das, P. S., Rohani, M. F., Sulivany, B. S. a. A., Nibir, S. S., Juthi, R. A., Satter, N. A., Hossain, M. S., & Ismael, S. S. (2025).

 DIETARY SILICA NANOPARTICLE AMELIORATES THE GROWTH PERFORMANCE AND MUSCLE

- COMPOSITION OF STINGING CATFISH, HETEROPNEUSTES FOSSILIS. Science Journal of University of Zakho, 13(1), 33–39. https://doi.org/10.25271/sjuoz.2025.13.1.1394
- Flores, A., & Shrimpton, J. M. (2011). Differential physiological and endocrine responses of rainbow trout, Oncorhynchus mykiss, transferred from fresh water to ion-poor or salt water. *General and Comparative Endocrinology*, 175(2), 244–250. https://doi.org/10.1016/j.ygcen.2011.11.002
- Ghelichpour, M., Mirghaed, A. T., Mirzargar, S. S., Joshaghani, H., & Mousavi, H. E. (2017). Modification of saltwater stress response in Cyprinus carpio (Linnaeus, 1758) pre-exposed to pesticide indoxacarb. *Ecotoxicology and Environmental Safety*, 147, 139–143. https://doi.org/10.1016/j.ecoenv.2017.08.029
- Ghelichpour, M., Mirghaed, A. T., & Zargar, A. (2020). The response of lufenuron- And flonicamid-exposed Cyprinus carpio to saltwater challenge: Study on ion-regulation and stress genes expression and plasma antioxidant characteristics. *Aquaculture Research*, 51(12), 4829–4837. https://doi.org/10.1111/are.14773
- Gopi, N., Vijayakumar, S., Thaya, R., Govindarajan, M., Alharbi, N. S., Kadaikunnan, S., Khaled, J. M., Al-Anbr, M. N., & Vaseeharan, B. (2019). Chronic exposure of Oreochromis niloticus to sub-lethal copper concentrations: Effects on growth, antioxidant, non-enzymatic antioxidant, oxidative stress and non-specific immune responses. *Journal of Trace Elements in Medicine and Biology*, 55, 170–179. https://doi.org/10.1016/j.jtemb.2019.06.011
- Grosell, M., Blanchard, J., Brix, K., & Gerdes, R. (2007). Physiology is pivotal for interactions between salinity and acute copper toxicity to fish and invertebrates. *Aquatic Toxicology*, 84(2), 162–172. https://doi.org/10.1016/j.aquatox.2007.03.026
- Hoseini, S. M., & Sulivany, B. S. A. (2024). COPPER AND MICROPLASTIC EXPOSURE AFFECTS THE GILL GENE EXPRESSION OF COMMON CARP DURING SALTWATER CHALLENGE. Science Journal of University of Zakho, 12(3), 382–387. https://doi.org/10.25271/sjuoz.2024.12.3.1335
- Hoseini, S. M., Khosraviani, K., Delavar, F. H., Arghideh, M., Zavvar, F., Hoseinifar, S. H., Van Doan, H., Zabihi, E., & Reverter, M. (2022). Hepatic transcriptomic and histopathological responses of common carp, Cyprinus carpio, to copper and microplastic exposure. *Marine Pollution Bulletin*, 175, 113401. https://doi.org/10.1016/j.marpolbul.2022.113401
- Hoseini, S. M., Al Sulivany, B. S., Afzali-Kordmahalleh, A., Abdollahpour, H., Rajabiesterabadi, H., & Yousefi, M. (2025).

 Effects of dietary citric acid, lactic acid, and potassium sorbate mixture on growth performance and intestinal immunological parameters in common carp (Cyprinus carpio) juveniles. *Journal of the World Aquaculture Society*, 56(1), e70004. https://doi.org/10.1111/jwas.70004
- Jinhui, S., Sudong, X., Yan, N., Xia, P., Jiahao, Q., & Yongjian, X. (2019). Effects of microplastics and attached heavy metals on growth, immunity, and heavy metal accumulation in the yellow seahorse, Hippocampus kuda Bleeker. *Marine Pollution Bulletin*, 149, 110510. https://doi.org/10.1016/j.marpolbul.2019.110510
- Kiilerich, P., Kristiansen, K., & Madsen, S. S. (2007a). Cortisol regulation of ion transporter mRNA in Atlantic salmon gill and the effect of salinity on the signaling pathway. *Journal of Endocrinology*, 194(2), 417–427. https://doi.org/10.1677/joe-07-0185
- Kiilerich, P., Kristiansen, K., & Madsen, S. S. (2007b). Hormone receptors in gills of smolting Atlantic salmon, Salmo salar: expression of growth hormone, prolactin, mineralocorticoid and glucocorticoid receptors and 11β-hydroxysteroid

- dehydrogenase type 2. General and Comparative Endocrinology, 152(2-3), 295-303. https://doi.org/10.1016/j.ygcen.2006.12.018
- Kim, J. H., Yu, Y. B., & Choi, J. H. (2021). Toxic effects on bioaccumulation, hematological parameters, oxidative stress, immune responses and neurotoxicity in fish exposed to microplastics: A review. *Journal of Hazardous Materials*, 413, 125423. https://doi.org/10.1016/j.jhazmat.2021.125423
- Lu, K., Qiao, R., An, H., & Zhang, Y. (2018). Influence of microplastics on the accumulation and chronic toxic effects of cadmium in zebrafish (Danio rerio). *Chemosphere*, 202, 514-520.https://doi.org/10.1016/j.chemosphere.2018.03.145
- Malhotra, N., Ger, T., Uapipatanakul, B., Huang, J., Chen, K. H., & Hsiao, C. (2020). Review of Copper and Copper nanoparticle toxicity in fish. *Nanomaterials*, 10(1128);10-28. https://doi.org/10.3390/nano10061126
- Marsigliante, S., Barker, S., Jimenez, E., & Storelli, C. (2000). Glucocorticoid receptors in the euryhaline teleost Anguilla anguilla. *Molecular and Cellular Endocrinology*, 162(1–2), 193–201. https://doi.org/10.1016/s0303-7207(99)00262-2
- McCormick, S. D., Regish, A., O'Dea, M. F., & Shrimpton, J. M. (2008). Are we missing a mineralocorticoid in teleost fish? Effects of cortisol, deoxycorticosterone and aldosterone on osmoregulation, gill Na+,K+-ATPase activity and isoform mRNA levels in Atlantic salmon. *General and Comparative Endocrinology*, 157(1), 35–40. https://doi.org/10.1016/j.ygcen.2008.03.024
- McCormick, S. D., Regish, A. M., & Christensen, A. K. (2009). Distinct freshwater and seawater isoforms of Na+/K+-ATPase in gill chloride cells of Atlantic salmon. *Journal of Experimental Biology*, 212(24), 3994-4001. https://doi.org/10.1242/jeb.037275
- Naz, S., Hussain, R., Ullah, Q., Chatha, A. M. M., Shaheen, A., & Khan, R. U. (2020). Toxic effect of some heavy metals on hematology and histopathology of major carp (Catla catla). *Environmental Science and Pollution Research*, 28(6), 6533–6539. https://doi.org/10.1007/s11356-020-10980-0
- Owais, M., Mohammed, D. A., Mhammad, H. A., Al Sulivany, B. S., Dernekbaşı, S., & Fazal, R. M. (2025). The Role Of Silica Nanoparticles In Modulating Growth Performance, Enzyme Activity, And Heavy Metal Accumulation In Muscle Tissue Of Common Carp (Cyprinus carpio. L). Science Journal of University of Zakho, 13(2), 197–205. https://doi.org/10.25271/sjuoz.2025.13.2.1495
- Roda, J. F. B., Lauer, M. M., Risso, W. E., & dos Reis Martinez, C. B. (2020). Microplastics and copper effects on the neotropical teleost Prochilodus lineatus: Is there any interaction?. *Comparative Biochemistry and Physiology Part A:*Molecular & Integrative Physiology, 242, 110659. https://doi.org/10.1016/j.cbpa.2020.110659
- Shrimpton, J. M., & McCormick, S. D. (1999). Responsiveness of gill Na+/K+-ATPase to cortisol is related to gill corticosteroid receptor concentration in juvenile rainbow trout. *Journal of Experimental Biology*, 202(8), 987–995. https://doi.org/10.1242/jeb.202.8.987

- Sonone, S., Jadhav, S., Sankhla, M., & Kumar, R. (2020). Water Contamination by Heavy Metals and their Toxic Effect on Aquaculture and Human Health through Food Chain. *Letters in Applied NanoBioScience*, 10(2), 2148–2166. https://doi.org/10.33263/lianbs102.21482166
- Wen, B., Jin, S., Chen, Z., Gao, J., Liu, Y., Liu, J., & Feng, X. (2018). Single and combined effects of microplastics and cadmium on the cadmium accumulation, antioxidant defence and innate immunity of the discus fish (Symphysodon aequifasciatus). *Environmental Pollution*, 243, 462–471. https://doi.org/10.1016/j.envpol.2018.09.029
- Yousefi, M., Adineh, H., Sulivany, B. S. a. A., Alamdari, E. G., Yilmaz, S., Mahboub, H. H., & Hoseini, S. M. (2025). The Potential of the Inclusion of Prosopis farcta Extract in the Diet on the Growth Performance, Immunity, Digestive Enzyme Activity, and Oxidative Status of the Common Carp, Cyprinus carpio, in Response to Ammonia Stress. *Animals*, 15(6), 895. https://doi.org/10.3390/ani15060895